Abstract Submitted for the DNP17 Meeting of The American Physical Society

Developing the $(d,p\gamma)$ reaction as a surrogate for (n,γ) in inverse kinematics¹ ALEXANDR LEPAILLEUR, HARRY SIMS, HEATHER GARLAND, TRAVIS BAUGHER, JOLIE A CIZEWSKI, ANDREW RATKIEWICZ, DAIVID WALTER, Rutgers University, STEVEN D PAIN, Oak Ridge National Laboratory, KARL SMITH, University of Tennessee, GODDESS COLLABORATION COLLAB-ORATION — The r-process that proceeds via (n,γ) reactions on neutron-rich nuclei is responsible for the synthesis of about half of the elements heavier than iron. Because (n,γ) measurements on short-lived isotopes are not possible, the $(d,p\gamma)$ reaction is being investigated as a surrogate for (n,γ) . The experimental setup GODDESS (Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies) has been developed especially for this purpose. The Oak Ridge Rutgers University Barrel Array (ORRUBA) of position-sensitive silicon strip detectors was augmented with annular arrays of segmented strip detectors at backward and forward angles, resulting in a high-angular coverage for light ejectiles (20 to 160 degrees in the laboratory frame). The 134 Xe(d,p γ) reaction, used to commission the setup, was measured in inverse kinematics with stable beams from ATLAS impinged on C₂D₄ targets. Reaction protons were measured (ORRUBA) in coincidence with gamma rays (Gammasphere). An overview of GODDESS and preliminary results from the 134 Xe(d,p γ) study will be presented.

¹Work supported in part by U.S. D.O.E. and National Science Foundation.

Alexandre Lepailleur Rutgers University

Date submitted: 30 Jun 2017 Electronic form version 1.4