Abstract Submitted for the DNP17 Meeting of The American Physical Society

Structural changes in $^{78}\mathrm{Ge^1}$ ANNE M. FORNEY, W.B. WALTERS, UMD-CP, J. SETHI, C.J. CHIARA², A.D. AYANGEAKAA, J. HARKER, UMD/ANL, R.V.F. JANSSENS, S. ZHU, M.P. CARPENTER, M. ALCORTA³, G. GÜRDAL, C.R. HOFFMAN, B.P. KAY, F.G. KONDEV, T. LAURITSEN, C.J. LISTER⁴, E.A. MCCUTCHAN⁵, A.M. ROGERS⁴, D. SEWERYNIAK, ANL — The nuclear structure of Ge isotopes when approaching the N=50 shell closure was investigated at the ATLAS facility at Argonne National Laboratory using the GAMMASPHERE detector array following deep-inelastic reactions. The structure of $^{78}\mathrm{Ge}$ appears to differ significantly from that observed in the stable $^{72,74,76}\mathrm{Ge}$ isotopes. In particular, a sequence of states linked by dipole transitions has been observed. It shows some properties suggestive of a gamma vibration, like in the lighter Ge isotopes, but the absence of quadrupole cross-over transitions is notable. Possible interpretations of this structure will be discussed. In addition, new information on the $^{80}\mathrm{Ge}$ nucleus will be presented, including clarification of spin assignments owing to the recently identified presence of two β -decaying isomers from $^{80}\mathrm{Ga}^6$.

Anne Forney UMD-CP

Date submitted: 30 Jun 2017 Electronic form version 1.4

¹This material is based upon work supported by the U.S. DOE un- der DE-AC02-06CH11357 and DE-FG02-94ER40834. Resources of ANLs ATLAS setup, a DOE Office of Science user facility, were used.

²U.S. Army Research Laboratory, Adelphi, Maryland 20783, USA

³TRIUMF, Vancouver, British Columbia V6T2A3, Canada

 $^{^4{\}rm University}$ of Massachusetts Lowell, Lowell, Massachusetts 01854, USA

⁵Brookhaven National Laboratory, Upton, New York 11973, USA

⁶D. Verney et al., Phys. Rev C 87, 054307 (2013).