Abstract Submitted for the DNP17 Meeting of The American Physical Society

Beta-delayed neutron emission from ⁹⁴Rb at CARIBU¹ GEMMA WILSON, Louisiana State Univ., P CHOWDHURY, C LISTER, T BROWN, T CHILLERY, P COPP, E DOUCET, UMass Lowell, M CARPENTER, G SAVARD, S ZHU, Argonne Natl Lab, AJ MITCHELL, Australian Natl Univ — Beta-delayed neutron emission studies are important in the astrophysical r-process, nuclear structure and for nuclear reactor safety and design. The probability of β -delayed neutron emission in $^{94}\mathrm{Sr}$ is 10.2(2)%. Many of the γ rays in $^{94}\mathrm{Sr}$ are misplaced, and an estimated 26% are thought to be missing. Recently [1], substantial γ strength from above the neutron separation energy in ⁹⁴Sr has been reported. An experiment to understand this high-lying γ strength was performed with the X-Array (a highefficiency HPGe clover array), SCANS (Small CLYC Array for Neutron Scattering) and the SATURN decay station (Scintillator And Tape Using Radioactive Nuclei) for γ , fast-neutron and β -particle detection, respectively. Data from β decay of ^{94}Rb ions delivered from CARIBU were collected in a triggerless digital data acquisition system, with detected β , n, and γ events correlated offline. A new ⁹⁴Sr level scheme will be presented, with confirmation of new levels and transitions, in addition to evidence of γ strength above the neutron separation energy. [1] J. L. Tain et al, Phys. Rev. Lett 115 (062502) 2015.

¹NNSA Stewardship Science Academic Alliance Program through USDOE under Grant DE-NA0002932; USDOE, Office of Nucl Phys, under contract No. DE-FG02-96ER40978; Louisiana State Board of Regents RCS LEQSF(2016-19)-RD-A-09; DE-AC02-06CHI1357

Gemma Wilson Louisiana State Univ.

Date submitted: 30 Jun 2017 Electronic form version 1.4