Cross Section Measurements of the Reaction 23Na(p,γ)24Mg

AXEL BOELTZIG, RICHARD JAMES DEBOER, KEVIN MACON, MICHAEL WIESCHER, Univ., of Notre Dame and Joint Inst., for Nuclear Astrophysics, ANDREAS BEST, GIANLUCA IMBRIANI, Univ., of Naples and INFN Section of Naples, GYÖRGY GYÜRKY, Inst., for Nuclear Research (MTA ATOMKI), FRANK STRIEDER, South Dakota School of Mines & Technology — The reaction 23Na(p,γ)24Mg can provide a link from the NeNa to the MgAl cycle in stellar burning and is therefore of interest in nuclear astrophysics. To determine the reaction rates at stellar temperatures, new cross section measurements at low proton energies have been performed recently [1], and further experiments are underway [2]. The current cross section data implies that the reaction rate up to temperatures of 1 GK is determined by a few narrow resonances and direct capture. Complementary to these experimental efforts at low proton energies, cross section measurements at higher energies can help to constrain the direct capture and broad resonance contributions to the cross section and reduce the uncertainty of the extrapolation towards stellar energies. In this paper we report an experiment to measure the 23Na(p,γ)24Mg cross section with a solid target setup at the St. ANA 5U accelerator at the University of Notre Dame. The experiment and the current status of data analysis will be described.

1This work benefited from support by the National Science Foundation under Grant No. PHY-1430152 (JINA-CEE), the Nuclear Science Laboratory (NSL), the Istituto Nazionale di Fisica Nucleare (INFN), and the Gran Sasso Science Institute (GSSI).

Axel Boeltzig
University of Notre Dame & JINA

Date submitted: 05 Jul 2017