Analysis of the 48Ca neutron skin using a nonlocal dispersive-optical-model self-energy

MACK ATKINSON, Washington University, HOSSEIN MAHZOON, Michigan State University, WILLEM DICKHOFF, ROBERT CHARITY, Washington University — A nonlocal dispersive-optical-model (DOM) analysis of the 40Ca and 48Ca nuclei has been implemented. The real and imaginary potentials are constrained by fitting to elastic-scattering data, total and reaction cross sections, energy level information, particle number, and the charge densities of 40Ca and 48Ca, respectively. The nonlocality of these potentials permits a proper dispersive self-energy which accurately describes both positive and negative energy observables. 48Ca is of particular interest because it is doubly magic and has a neutron skin due to the excess of neutrons. The DOM neutron skin radius is found to be $r_{\text{skin}} = 0.245$, which is larger than most previous calculations. The neutron skin is closely related to the symmetry energy which is a crucial part of the nuclear equation of state. The combined analysis of 40Ca and 48Ca energy densities provides a description of the density dependence of the symmetry energy which is compared with the 48Ca neutron skin. Results for 208Pb will also become available in the near future.

1NSF