First principles calculations of weak decays in atomic nuclei

GAUTE HAGEN, Oak Ridge National Laboratory — This talk reports on recent progress in first principles computations of neutrinoless and two-neutrino double-beta decay in 48Ca, with interactions and currents from chiral effective field theory. Predictions from coupled-cluster and in-medium similarity-renormalization-group calculations agree, and they yield a nuclear matrix element for the neutrinoless double beta decay that is smaller than expected. Calculations of Gamow-Teller decays from p-shell nuclei to tin isotopes reveal that the long-standing problem of the quenching of the axial coupling constant g_A can be resolved by meson exchange currents and a proper treatment for many-body correlations. In particular, meson-exchange currents play a crucial role in the super-allowed Gamow-Teller decay of 100Sn.

Gaute Hagen
Oak Ridge National Lab

Date submitted: 30 Jun 2017

Electronic form version 1.4