Abstract Submitted for the DNP17 Meeting of The American Physical Society

Neutron Radioactivity in ²⁶O and Lifetime Analysis of Neutron-Rich Isotopes¹ CF PERSCH, P.A. DEYOUNG, Hope College, N FRANK, Augustana College, P GUEYE, Hampton University, AN KUCHERA, Davidson, T REDPATH, Michigan State University, MONA COLLABORATION — Currently there is only one known isotope that is likely to exhibit two-neutron radioactivity. This unique occurrence is found when observing neutron-rich ²⁶O. This isotope of oxygen is particularly interesting because early experiments show it living significantly longer than nearby isotopes. In order to gain a better understanding of neutron radioactivity, the MoNA Collaboration is working on determining the lifetime of ²⁶O. To experimentally deduce the lifetime, the change in energy during the emission of neutrons from the ²⁶O nucleus is being measured. A ²⁷F beam was accelerated into a beryllium target, and a variety of interactions occurred. In the case of one-proton removal, ²⁶O was formed. Two neutrons are then emitted from 26 O, and the MoNA and LISA detectors are used to measure the velocity of the neutrons. This velocity is compared to the velocity of the fragment ²⁴O. The relative velocity can be used to find the lifetime of ²⁶O. Learning about this lifetime will provide valuable information about neutron-rich isotopes and give more insight into two-neutron radioactivity.

¹This material is based upon work supported by the National Science Foundation under grant No. PHY-1306074 and under grant No. PHY-1613188

Cole Persch Hope College

Date submitted: 27 Jul 2017 Electronic form version 1.4