Abstract Submitted for the DNP17 Meeting of The American Physical Society

Experimentally Determining β -Decay Intensities for ^{103,104}Nb to Improve R-process Calculations¹ J. GOMBAS, P.D. DEYOUNG, Hope College, A. SPYROU, A.C. DOMBOS, S. LYONS, National Superconducting Cyclotron Laboratory, THE SUN COLLABORATION — The rapid neutron capture process (r-process) is responsible for the formation of nuclei heavier than iron. This process is theorized to occur in supernovas and/or neutron star mergers. R-process calculations require the accurate knowledge of a significant amount of nuclear properties, the majority of which are not known experimentally. Nuclear masses, β -decay properties and neutron-capture reactions are all input ingredients into r-process models. This present study focuses on the β decay of ¹⁰³Nb and ¹⁰⁴Nb. The β decay of ¹⁰³Nb and ¹⁰⁴Nb, two nuclei found in the r-process, were observed at the NSCL using the Summing NaI (SuN) detector. An unstable beam implanted inside SuN. The γ rays were measured in coincidence with the emitted electrons. The β -decay intensity function was then extracted. The experimentally determined functions for 103 Nb and ¹⁰⁴Nb will be compared to predictions made by the Quasi Random Phase Approximation (QRPA) model. These theoretical calculations are used in astrophysical models of the r-process. This comparison will lead to a better understanding of the nuclear structure for ¹⁰³Nb and ¹⁰⁴Nb. A more dependable prediction of the formation of heavier nuclei birthed from supernovas or neutron star mergers can then be made.

¹This material is based upon work supported by the National Science Foundation under grant No. PHY-1613188 and PHY-1306074, and by the Hope College Department of Physics Guess Research Fund.

> J. Gombas Hope College

Date submitted: 27 Jul 2017

Electronic form version 1.4