Abstract Submitted for the DNP17 Meeting of The American Physical Society

Modeling Neutral-Current Neutrino Interactions in Liquid Argon¹ CYNTHIA NUNEZ, Florida International University, KATE SCHOLBERG, ERIN CONLEY, Duke University, DEEP UNDERGROUND NEUTRINO EXPERIMENT COLLABORATION — Studies of supernova neutrinos provide knowledge of neutrino oscillations and supernova physics. The Deep Underground Neutrino Experiment (DUNE) will enable exploration of the three-flavor model of neutrino physics and solve questions in regards to the dynamics of supernova, the stability of matter, and matter-antimatter asymmetry. DUNE will use a Liquid Argon Time-Projection Chamber (LArTPC) which will be able to detect charged-current, neutral-current, and elastic-scattering interactions. The neutral current ν – 40 Ar interaction leaves an excited 40 Ar nucleus that releases a 9.8 MeV gamma which is analyzed for the LArTPC. This project creates a smearing file for SNOwGLoBES, an event rate calculator, that corresponds to the DUNE detector simulation for this interaction. The expected number of neutral current supernova neutrino events in liquid 40 Ar is determined and the observable energy distribution is examined.

¹NSF REU Program (NSF-PHY-1461204)

Cynthia Nunez Florida International University

Date submitted: 30 Jul 2017 Electronic form version 1.4