Scintillator Detector Characterization for β-Delayed Neutron Emission\(^1\) RACHEL WILLIAMS, Black Hills State University, SCOTT MARLEY, SERGIO LOPEZ, SUDARSAN BALAKRISHNAN, Louisiana State University — Previous methods to study β-delayed neutron (βDN) emission have yielded high efficiency or modest energy resolution, but not both. A new method to study βDN emission utilizes an ion trap to keep the radioactive ions effectively at rest and a series of detectors to measure the time of flight of the recoil ion and other decay radiation. A procedure and mechanism were developed to systematically characterize the position and low-energy response of the ΔE-E scintillator detectors utilized with the ion trap. The mechanism was designed and subsequently used to hold various sources, including 113Sn and 207Bi, at a set distance from the face of the ΔE scintillator, and rotate to characterize all areas of the detector.

\(^1\)NSF (grant 1560212)