Abstract Submitted for the DNP19 Meeting of The American Physical Society

Reaction rates that limit 44 Ti from core-collapse supernovae as dense matter constraint: Shocking results 1 SHIV SUBEDI, ZACH MEISEL, GRANT MERZ, Ohio University — Recent observational advances have enabled high resolution mapping of 44 Ti in core-collapse supernova (CCSN) remnants. Comparisons between observations and 3D models provide stringent constraints on the CCSN mechanism. However, recent work has identified several uncertain nuclear reaction rates that influence 44 Ti and 56 Ni production in model calculations of shock-driven nucleosynthesis. We evolved $15{\rm M}_{\odot}$, $18{\rm M}_{\odot}$, $22{\rm M}_{\odot}$ and $25{\rm M}_{\odot}$ stars from ZAMS to CCSN in MESA (Modules for Experiments in Stellar Astrophysics) and investigated previously identified sensitivities of 44 Ti and 56 Ni production in CCSN to varied reaction rates. I will present our final results of this sensitivity study. I will also briefly discuss ongoing experimental work motivated by this study namely a direct cross section measurement of $^{39}{\rm K}({\rm p},\gamma)^{40}{\rm Ca}$.

¹This work was supported in part by the DOE Office of Science under grants DE-FG02-88ER40387 and DE-SC0019042.

Shiv Subedi Ohio University

Date submitted: 26 Jun 2019 Electronic form version 1.4