Abstract Submitted for the DNP19 Meeting of The American Physical Society

Precision absolute polarimeter development for the 3He^{++} ion beam at 5.0-6.0 MeV energy. GRIGOR ATOIAN, ANDREI POBLAGUEV, ANATOLI ZELENSKI, Brookhaven National Lab. — There is opportunity for precision measurements of the absolute ${}^{3}\text{He}^{++}$ polarization at beam energies 5.0-6.0 MeV after the EBIS Linac. The analyzing power for the elastic scattering of spin-1/2 particles (${}^{3}\text{He}$) on spin-0 particles (${}^{4}\text{He}$) can reach the maximum theoretical value $A_{\rm N} = 1$ at some point ($E_{\rm beam}, \theta_{\rm CM}$). The main effort of this R@D will be development of precision absolute polarimeter for the measurements of the ${}^{3}\text{He}^{++}$ beam polarization produced in the EBIS as a reference for the further polarization measurements along accelerator chain. The polarimeter vacuum system is integrated in the spin-rotator transport line. The ${}^{3}\text{He}^{++}$ ion beam will enter the scattering chamber through the thin window to minimize beam energy losses. The scattering chamber is filled with ${}^{4}\text{He}$ gas at 5 5 torr pressure. The silicon strip detectors will be used for energy and TOF measurements of the scattered ${}^{3}\text{He}$ and recoil ${}^{4}\text{He}$ nuclei (in coincidence) for the identification of the scattering kinematics.

> Grigor Atoian Brookhaven National Lab.

Date submitted: 27 Jun 2019

Electronic form version 1.4