Abstract Submitted for the DNP19 Meeting of The American Physical Society

Report on the performance of a dual-mode inorganic scintillator \mathbf{TLYC}^1 CHING-YEN WU, JACK HENDERSON, Lawrence Livermore Natl Lab - TLYC (Tl₂⁶LiYCl₆, $\geq 95\%$ ⁶Li, 75.8% ³⁵Cl, $\rho = 4.5$ g/cm³) is a dual-mode inorganic scintillator with the capability to detect both neutrons and γ rays with good energy resolution. The γ -ray energy resolution better than 4% was reported for a crystal size of 1" x 1". Unlike most neutron detectors which depend on the time-offlight technique to determine the energy, TLYC can be sued to measure the neutron energy directly through charged-particle creating reactions on the constituent isotopes. A resolution better than 10% for fast neutrons with energies up to 8 MeV was obtained for the same class of scintillator, CLYC (Cs_2LiYCl_6), where cesium is replaced by thallium for the molecular formula of TLYC. It opens the door for many applications. A crystal size of $1^{"} \times 1^{"}$ is acquired recently and an extensive test is carried out using a ²⁵²Cf PPAC to characterize the pulse-shape discrimination between neutrons and γ rays as well as the energy and timing resolution. The prompt fission neutron and γ -ray spectra can be measured by TLYC in coincidence with the detection of fission fragments by PPAC. The detector response for both neutrons and γ rays can be measured simultaneously using this coincident technique. The characterization of those performances will be presented.

¹Work at LLNL is supported by the U.S. DOE under Contracts No. DE-AC52-07NA27344.

> Ching-Yen Wu Lawrence Livermore Natl Lab

Date submitted: 27 Jun 2019

Electronic form version 1.4