Abstract Submitted for the DNP19 Meeting of The American Physical Society

Unravelling the ³He Electromagnetic Form Factors¹ SCOTT BAR-CUS, The Thomas Jefferson National Accelerator Facility — New global fits of the ³He elastic cross section world data will be presented along with extractions of both electric and magnetic form factors and charge densities. The updated ³He fits were motivated by new high Q^2 data. The resultant ³He first magnetic form factor minimum is found to have shifted up in Q^2 by several fm⁻². Further, large discrepancies exist between theory predictions of the magnetic form factor and those determined by elastic electron scattering. To address this discrepancy a new experiment has been proposed for Jefferson Lab's Hall C to measure the double-polarization asymmetry of ³He. This would be the first extraction of ³He form factors using polarization observables. The advantage of this double-polarization measurement is that, unlike traditional Rosenbluth methods, the extraction is sensitive to the signs of the form factors. As a result, the sign of the asymmetry flips at each form factor minima. Double-polarization experiments have found large disagreement, particularly at high Q^2 , between proton form factors extracted via polarization observables and unpolarized Rosenbluth separations. This experiment will determine if such a disagreement exists for ³He, while also allowing for hypothesis testing of theoretical models.

¹DOE, JSA Fellowship

Scott Barcus The Thomas Jefferson National Accelerator Facility

Date submitted: 11 Jul 2019

Electronic form version 1.4