Abstract Submitted for the DNP19 Meeting of The American Physical Society

Possible particle-hole intruder sequence in ⁸³Se₄₉.¹ WILLIAM WALTERS, ANNE MARIE FORNEY, University of Maryland, College Park — A new sequence of higher-spin levels at 1266 (7/2⁺), 2407 (11/2⁺), 3689 (15/2⁺), and 4673 (19/2⁺) has been identified in the single-neutron-hole ⁸³Se₄₉ nucleus. This sequence feeds into the 5/2⁺ level at 583 keV that is strongly populated in (d,p) reaction studies and considered as a 1-particle-2-hole state connected to the known d_{5/2} ground state of ⁸⁵Se₅₁. The data were taken using Gammasphere at the ATLAS accelerator complex at Argonne National Laboratory following the interaction of a 630-MeV ⁸²Se beam with ²⁰⁸Pb and ²³⁸U targets. These and previously identified levels in ⁸³Se will be compared to shell-model calculations. [1] Richard A. Meyer, O. G. Lein III, and E. A. Henry, Phys. Rev. C 25, 682 (1982). [2] Luis A Montestruque et al., Nucl. Phys. A305, 29 (1978). [3] Marie-Genevieve Porquet et al., Eur. Phys. J. A 39, 295 (2009).

¹This work is supported by the U.S. Department of Energy, Office of Nuclear Physics under Contract DE-AC02-06CH11357 and under Grant DE-FG02-94ER40834. This research used resources of ANLs ATLAS facility, which is a DOE Office of Science User Facility.

William Walters University of Maryland, College Park

Date submitted: 28 Jun 2019 Electronic form version 1.4