Abstract Submitted for the DNP19 Meeting of The American Physical Society

On the nature of 0^+ states in ⁶⁴Ni from Coulomb excitation¹ DAVID LITTLE, ROBERT JANSSENS, MICHAEL JONES, University of North Carolina at Chapel Hill, DANIEL AYANGEAKAA, United States Naval Academy, THE UNC/TUNL, USNA, UMD, ANL, LLNL, LBNL, MSU COLLABORATION - Recent experimental work on the doubly-magic nucleus ⁶⁸Ni has shown that shape coexistence occurs despite its rigidly spherical ground state [1]. Several low-lying 0^+ states have been discovered and attributed to different minima in the nuclear potential associated with oblate and prolate deformations. Consequently, it is important to question if such 0^+ excitations can also occur in the most neutron-rich, stable Ni isotope, ⁶⁴Ni, and whether or not they can be tied to shape coexistence. Two low-lying 0^+ states have previously been observed in 64 Ni, but additional information beyond their excitation energy and spin is needed in order to investigate their properties. A high-statistics Coulomb excitation experiment was performed at the ATLAS facility at ANL, where a ²⁰⁸Pb target was bombarded by a ⁶⁴Ni beam at an energy of 272 MeV. The experimental setup involved the new GRETINA tracking array in conjunction with the Compact Heavy Ion Counter, CHICO2. Thirteen transitions were observed in 64 Ni, including the 1521- and 1680-keV γ -rays associated with the de-excitation of the 0^+_2 and 0^+_3 states, respectively. B(E2) reduced transition probabilities were obtained for all observed states. [1] S. Leoni et al., PRL 118, 162502 (2017).

¹This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Grant Numbers DE-FG02-97ER41041 (UNC) and DE-FG02-97ER41033 (TUNL).

David Little University of North Carolina at Chapel Hill

Date submitted: 28 Jun 2019

Electronic form version 1.4