DNP19-2019-000179

Abstract for an Invited Paper for the DNP19 Meeting of the American Physical Society

Recent studies of exotic nuclei near the self-conjugate doubly-magic ¹⁰⁰Sn nucleus¹ DARIUSZ SEWERYNIAK, Argonne National Laboratory

The exotic proton-rich self-conjugate doubly-magic nucleus ¹⁰⁰Sn is one of the corner stones of nuclear structure. The ¹⁰⁰Sn region provides a stringent test for the shell model far away from the line of stability. The ¹⁰⁰Sn nucleus is the fastest known Gamow-Teller β emitter. Its large binding energy is signaled by the existence of an island of proton and α emitters decaying towards the N=Z=50 closed shells. Also, the astrophysical rp-process was proposed to terminate with α decays of light Te isotopes. Despite prohibitively small production cross sections, several exotic nuclei near ¹⁰⁰Sn have been studied recently using various probes at the ATLAS facility at the Argonne National Laboratory. 1) First evidence for the α -decay chain ¹⁰⁸Xe-¹⁰⁴Te into ¹⁰⁰Sn was observed. This is only the second case of α decay into a doubly-magic nucleus besides ²¹²Po, which has been a benchmark of microscopic models of α decay. The reduced α -decay widths deduced for ¹⁰⁸Xe and ¹⁰⁴Te are larger than that for ²¹²Po supporting the expectation that the enhanced interaction between protons and neutrons, which occupy the same orbitals, leads to a larger α -particle preformation, which results in the so-called superallowed α decay. 2) A small proton-decay branch was found in ¹⁰⁸I. The proton separation energy in ¹⁰⁴Sb, deduced using the measured ¹⁰⁸I proton energies, indicates that the rp-process does not form a Sn-Sb-Te cycle at ¹⁰³Sn which is delayed until heavier Sn isotopes. 3) Excited states in the fast ¹⁰⁵Te α emitter were studied for the first time using in-beam γ -ray spectroscopy to shed light on the long standing issue of the ordering of the d_{5/2} and g_{7/2} single-neutron orbitals in ¹⁰¹Sn.

¹This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract number DE-AC02-06CH11357. This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User Facility.