Abstract Submitted for the DNP19 Meeting of The American Physical Society

Measurement of the longitudinal spin asymmetries for weak boson production in polarized proton-proton collisions at $\sqrt{s} = 510$ GeV at **RHIC** BERND SURROW, Temple University, STAR COLLABORATION — The STAR experiment at RHIC has provided significant contributions to our understanding of the spin structure and dynamics of the proton. The production of W^{\pm} bosons in longitudinally polarized p-p collisions at $\sqrt{s} = 510$ GeV provides a direct probe of the spin-flavor structure of the proton through the measurement of the parityviolating single-spin asymmetry, A_L . $W^{-(+)}$ bosons are produced in $\bar{u} + d(\bar{d} + u)$ collisions and can be detected through their leptonic decays, $e^- + \bar{\nu}_e (e^+ + \nu_e)$, where only the respective charged lepton is measured. The STAR experiment is well equipped to measure $W^{\pm} \rightarrow e^{\pm} + \nu$. The main STAR detector sub-systems used in this measurement are the Time Projection Chamber and Electromagnetic Calorimeters. The published 2011 / 2012 STAR A_L results based on 86 pb⁻¹ of data provided significant impact in constraining the helicity distributions of \bar{u} and \bar{d} quarks. In 2013, STAR collected an additional, larger data sample of 250 pb^{-1} . Final published results from the 2013 dataset for the measurement of $W^{\pm} A_L$ and A_{LL} , and $Z A_L$ will be presented including a discussion of the impact on the sea-quark helicity distribution functions.

> Bernd Surrow Temple University

Date submitted: 30 Jun 2019

Electronic form version 1.4