Abstract Submitted for the DNP19 Meeting of The American Physical Society

Transits of the QCD Critical Point DEREK TEANEY, FANGLIDA YAN, Stony Brook University, YI YIN, MIT, YUKINAO AKAMATSU, Osaka University — We analyze the evolution of hydrodynamic fluctuations in a heavy ion collision as the system passes close to the QCD critical point. We introduce two small dimensionless parameters λ and Δ_s to characterize the evolution. λ compares the microscopic relaxation time (away from the critical point) to the expansion rate $\lambda \equiv \tau_0/\tau_Q$, and Δ_s compares the baryon to entropy ratio, n/s, to its critical value, $\Delta_s \equiv (n/s - n_c/s_c)/(n_c/s_c)$. We determine how the evolution of critical hydrodynamic fluctuations depends parametrically on λ and Δ_s . Finally, we use this parametric reasoning to estimate the critical fluctuations and correlation length for a heavy ion collision, and to give guidance to the experimental search for the QCD critical point.

> Derek Teaney Stony Brook University

Date submitted: 30 Jun 2019

Electronic form version 1.4