Abstract Submitted for the DNP19 Meeting of The American Physical Society

Neutron-induced background on natural tellurium relevant to ¹³⁰Te $0\nu\beta\beta$ decay searches at CUORE and SNO+ WERNER TORNOW, SEAN FINCH, Duke University, MARY KIDD, Tennessee Tech University Gamma-ray production cross-section data have been obtained for the reactions 126,128,130 Te(n,n' γ) at five mean neutron energies between 3.5 and 10 MeV. We report data for the γ -ray energy region relevant to $0\nu\beta\beta$ decay of ¹³⁰Te with $Q_{\beta\beta}$ -value of 2527.515 keV. For CUORE only the γ -ray transitions of excited states of ¹³⁰Te at 2527.06 keV and of ¹²⁶Te at 2533.85 keV are of interest. For SNO+ with its inferior energy resolution, additional excited state decays of ¹³⁰Te levels at 2575.2, 2581.15, and 2607.33 keV, of ¹²⁸Te levels at 2494.20, 2508.06, 2516.64, 2550.52, 2571.17, 2587.14, 2598.99, and 2630.14 keV, and of ¹²⁶Te levels at 2496.83, 2503.55, 2577.822and 2585.462 keV are important. The highest cross-section values were found for cascade γ -ray transitions to the ground state, while direct transitions to the ground state are very weak and have been observed only for 130 Te at 2607.31 keV, for 128 Te at 2508.04 keV, and for ¹²⁶Te at 2503.32 keV. However, both the CUORE and SNO+ detectors may not be able to distinguish between cascade transitions to the ground state and direct transitions, making especially the neutron-induced excitation of the 2527.06 keV state of ¹³⁰Te a potential problem for $0\nu\beta\beta$ decay searches of ¹³⁰Te.

> Werner Tornow Duke University

Date submitted: 01 Jul 2019

Electronic form version 1.4