Abstract Submitted for the DNP19 Meeting of The American Physical Society

Nucleosynthesis of ⁶⁰Fe and constraints on the nuclear level density and photon strength function. DEBRA RICHMAN, ARTEMIS SPYROU, MALLORY SMITH, KATIE CHILDERS, REBECCA LEWIS, SEAN LIDDICK, STEPHANIE LYONS, ALICIA PALIMISANO, CHANDANA SUM-ITHRARACHCHI, Michigan State University, ALEX DOMBOS, FARHEEN NAQVI, University of Notre Dame, ANN-CECILIE LARSEN, MAGNE GUT-TORMSEN, JOERGEN MIDTBOE, University of Oslo, PANOS GASTIS, GEOR-GIOS PERDIKAKIS, Central Michigan University, AARON COUTURE, CHRIS PROKOP, Los Alamos National Laboratory, ADRIANNA URECHE, University of California Berkeley, BEN CRIDER, Mississippi State University — ⁶⁰Fe is created in massive stars prior to core collapse supernova. The signature γ -rays from β -decay of this isotope indicate ongoing nucleosynthesis in the Galaxy among other interesting astrophysical processes. In order to understand these observations a complete understanding of the creation, destruction and nuclear properties of 60 Fe in the astrophysical environment are required. Due to the short half-life of ⁵⁹Fe a direct capture reaction experiment to determine the cross section of 59 Fe(n, γ) 60 Fe has been a challenge and remains the most uncertain link in the reaction chain to date. Using the β -decay of a ⁶⁰Mn radioactive beam to populate high energy states in the ⁶⁰Fe nucleus, an indirect constraint for this reaction was made using the β -Oslo Method. Results from this analysis were used as input in TALYS and the new constraint on 59 Fe (n,γ) ⁶⁰Fe will be presented.

> Debra Richman Michigan State University

Date submitted: 01 Jul 2019

Electronic form version 1.4