Abstract Submitted for the DNP19 Meeting of The American Physical Society

Investigation of Neutron-Induced Backgrounds on 134, 136Xe at En = 5 - 8 MeV for Neutrinoless Double Beta Decay Searches¹ MARY KIDD, Tennessee Technological University, WERNER TORNOW, SEAN FINCH, FNU KRISHICHAYAN, TUNL/Duke University — Neutrinoless double-beta decay $(0\nu\beta\beta)$ studies are both the best way to determine the Majorana nature of the neutrino and determine its effective mass. The two main experiments searching for $0\nu\beta\beta$ -decay of ¹³⁶Xe (Q value = 2457.8 keV) are Kamland-Zen and EXO-200. Though both experiments have enriched ¹³⁶Xe targets, these targets still contain significant quantities of ¹³⁴Xe. A new nuclear level was reported in ¹³⁴Xe that decays to the ground state emitting a 2485.7 keV gamma ray [1]. For incident neutron energies of 2.5 4.5 MeV, the γ -ray production cross section for this branch was found to be on the order of 10 mb. Here, we further explore the potential neutroninduced backgrounds on both 134 Xe and 136 Xe for extended neutron energies from 5 to 8 MeV. We will report our preliminary results for neutron inelastic scattering on 134,136 Xe in applications to $0\nu\beta\beta$ decay searches. [1] E.E. Peters, et al., EPJ Web of Conferences, 93, 01027 (2015).

¹NSF PHY-1614348, DE-FG02-97ER41033

Mary Kidd Tennessee Technological University

Date submitted: 01 Jul 2019

Electronic form version 1.4