Abstract Submitted for the DNP19 Meeting of The American Physical Society

Study of proton-resonances in the ${}^{19}Ne(d,n){}^{20}Na$ reaction using **RESONEUT** detector system¹ MEENU THAKUR, L.T. BABY, I. WIEDENHÖVER¹, E TEMANSON, K HANSELMAN, G MCCANN, J BLACK-MON, Department of Physics, Florida State University, Tallahassee, Fl 32306, USA — Studies of nucleosynthesis in stellar explosions reveal that obtaining relevant information on the lowest lying resonances is crucial step to determine reaction rates in the astrophysical rp-process. In previous experiments at the RESOLUT facility, (d,n) reaction in inverse kinematics has been used to populate these resonances of astrophysical interest [1]. For such measurements, a compact neutron detector array RESONEUT has been developed which can efficiently detect low energy neutrons from (d,n) reaction [1]. In the present paper, results from our recently performed radioactive-beam experiment studying $^{19}Ne(d,n)^{20}Na$ reaction using RESONEUT will be presented. This reaction is comparable to direct proton capture 19 Ne(p, γ) 20 Na, which is of astrophysical significance. Results from previous studies indicate the contradictions in spin and parity assignment of the first proton resonance in ²⁰Na. So, we study the population of the lowest lying proton resonances in ²⁰Na using neutron time of flight spectroscopy in an attempt to resolve these contradictions and determine accurate information of reaction rate. [1]S. Kuvin et al, PRC 96, 045812 (2017)

¹This work is supported by the U.S. DOE under grant No. DE-FG02-02ER41220 and by the NSF under grant No. PHY-1712953

Meenu Thakur Department of Physics, Florida State University, Tallahassee, USA

Date submitted: 02 Jul 2019

Electronic form version 1.4