Abstract Submitted for the DNP19 Meeting of The American Physical Society

Transverse Distributions of the Strange Cloud of the Proton¹ ETHAN PURCELL, ENRIQUE SANCHEZ, MACQUARRIE THOMSON, Seattle University — Due to the Heisenberg uncertainty principle, a proton can generate a cloud of strange particles as it splits into a strange meson/baryon pair: a K or K^* meson and a Λ or Σ baryon. At relativistic speeds the proton is contracted into a disk transverse to its momentum. Our goal is to calculate the transverse momentum distributions and determine the transverse spatial distributions of the strange mesons. We use a light cone model for the two-body wave function $\psi(y, k_{\perp})$ that describes the probability that a proton will split into a meson/baryon pair in which the meson has longitudinal momentum fraction y and transverse momentum k_{\perp} . We analytically integrate $\psi(y, k_{\perp})$ to determine f(y), the probability of the mesonbaryon fluctuation for a given y. We numerically integrate f(y) and compare to total fluctuation probabilities, and use this to normalize our distributions. $\psi(y, k_{\perp})$ depends upon a parameter α which describes the shape of the fluctuation function. We study the dependence of the transverse momentum distributions on α . We then use a Bessel function transformation of $\psi(y, k_{\perp})$ to determine the transverse spatial extent of the kaon cloud, and compare it to the expected scale of $1/m_K$.

¹This work is supported by the M. J. Murdock Charitable Trust and by NSF Grant No. 1516105.

Ethan Purcell Seattle University

Date submitted: 23 Jul 2019

Electronic form version 1.4