Abstract Submitted for the DNP19 Meeting of The American Physical Society

Measurements of the 124 Sn(γ ,n) and 169 Tm(γ ,n) cross sections at $\mathbf{E}_{\gamma} = 13 \text{ MeV}^1$ KAYLISA WOLSEY, Brigham Young University - Idaho, SEAN FINCH, F. KRISHICHAYAN, Duke University and TUNL, JACK SILANO, Lawrence Livermore National Laboratory, WERNER TORNOW, Duke University and TUNL, ANTON TONCHEV, Lawrence Livermore National Laboratory, IN-NOCENT TXORSE, Duke University and TUNL — Nuclear data for photo-nuclear reactions is scarce. By using the activation technique, (γ,n) cross sections can be measured to a high precision. ¹⁶⁹Tm(n,2n) is a common neutron monitor reaction, but there is no available data on its photo-nuclear counterpart, the $^{169}(\gamma,n)$ reaction. Measurement of this reaction would allow use of thulium as a standard γ -ray monitor. The samples in this experiment were irradiated by monoenergetic γ -rays provided by the High Intensity γ -ray Source (HI γ S) located at Duke University. The resultant activity was quantified using γ -ray spectroscopy with high purity germanium detectors. The data confirmed the literature half-lives of ¹⁹⁶Au, ^{123m}Sn, and ¹⁶⁹Tm as 6.16 d, 40.1 m, and 93.1 d, respectively. The first successful cross-section measurements of $^{124}\mathrm{Sn}(\gamma, \mathrm{n})^{123m}\mathrm{Sn}$ and $^{169}\mathrm{Tm}(\gamma, \mathrm{n})^{168}\mathrm{Tm}$ reactions were performed.

¹NSF-PHY-1757783

Kaylisa Wolsey Brigham Young University - Idaho

Date submitted: 23 Jul 2019 Electronic form version 1.4