Abstract Submitted for the DNP19 Meeting of The American Physical Society

 $^{10}B(d,p)^{11}B$ and $^{25}Mg(d,p)^{26}Mg$ measurements using the Super-Enge Split-Pole Spectrograph¹ GRAY SELBY, ANTHONY KUCHERA, Davidson, GORDON MCCANN, KEN HANSELMAN, LAGY BABY, PAUL COTTLE, CHRIS ESPARZA, KIRBY KEMPER, FSU, ALEX CONLEY, RAFFY TRAAS, SHELLY LESHER, UW, JESSICA NEBEL-CROSSON, LEW RILEY, Ursinus, INGO WIEDENHOEVER, FSU — Two experiments were preformed using the Super-Enge Split-Pole Spectrograph at Florida State Universitys John D. Fox Accelerator Laboratory to measure high-resolution spectra of states in ^{26}Mg and ^{11}B through the use of (d,p) single-particle transfer reactions. Spin assignment confirmation of five states above the proton threshold of ${}^{26}Si$ are necessary for assessing the astrophysical impact of the ${}^{25}Al(p,\gamma)$ reaction rate on the ${}^{26}Al$ cosmic abundance. We investigate ${}^{25}Mg(d,p){}^{26}Mg$ as a mirror to ${}^{26}Al$ to assign spin to the mirrors to the states of interest. A previous study observed beta-delayed proton emission in the neutron-rich nucleus ^{11}Be with an unexpectedly high decay mode strength that can only be understood if the decay proceeds through a new single-particle resonance in ¹¹B strongly fed by beta-decay. A recent pre-print corroborates the study, providing the expected excitation energy. While the resonance in ^{11}B was not found, spin assignments of ¹¹B states were assigned, one of which was previously unassigned.

¹This work was supported by FSU.

Gray Selby Davidson

Date submitted: 23 Jul 2019 Electronic form version 1.4