Abstract Submitted for the DNP19 Meeting of The American Physical Society

Lifetimes Within the 73Se Nucleus¹ DEXTER ALLEN, R. HARING-KAYE, K. JONES, K. LE, Ohio Wesleyan University, J. DRING, Bundesamt fr Strahlenshutz (Germany), B. ABROMEIT, R. DUNGAN, R. LUBNA, S. TABOR, P.-L. TAI, VANDANA TRIPATHI, J. VONMOSS, Florida State University, S. MORROW, Houghton College — There is considerable uncertainty in the literature regarding the cascade intensities of the decay sequences in 73 Se. In particular, the degree to which each state is populated by side feeding can vary considerably. The goal of this work was to measure as many lifetimes as possible in 73 Se by gating from above the transition of interest in order to eliminate the effects of uncertainties in side feeding intensities. This was made possible by the excellent γ -ray counting statistics for 73 Se provided by the $^{14}C(^{62}Ni, 3n)$ reaction performed at Florida State University using a beam energy of 50 MeV and with a Compton-suppressed Ge detector array consisting of 3 Clover detectors and 7 single-crystal detectors. The Doppler-shift attenuation method was used to measure all lifetimes. Seven lifetimes were measured, four within the strongest positive-parity band and three within the favored negative-parity band. From these lifetimes the quadrupole deformation parameter β_2 could be inferred and compared with those predicted for these states as a function of spin. In general, the experimental trends were not reproduced in the calculations.

¹This project was funded by the Ohio Wesleyan University Summer Science Research Program and National Science Foundation under Grant No. 14-01574 (FSU).

> Robert Haring-Kaye Ohio Wesleyan University

Date submitted: 23 Jul 2019

Electronic form version 1.4