Abstract Submitted for the DNP19 Meeting of The American Physical Society

Characterization of Rn-220 as a Calibration Source in EXO-200 NICOLE KHUSID, University of Connecticut, EXO-200 COLLABORATION — The overarching goal of EXO-200 is to observe a phenomenon known as neutrinoless double-beta decay of the ¹³⁶Xe isotope, in which a nucleus ejects two electrons with zero neutrino emissions, violating lepton number conservation. A successful detection of such an event would change our understanding of the Standard Model, identifying neutrinos as Majorana particles. The time projection chamber (TPC) uses liquid xenon, enriched in ¹³⁶Xe, as a decay source and detection medium. Its architecture allows for the reconstruction of decay events based on their position and energy from light and charge depositions. Decays throughout the 220 Rn decay chain may be used for calibration purposes, such as creating a more accurate position-dependent light response map using high-energy alpha decays, measuring fluid velocities, and using pulse coincidences within the chain to investigate detector response to small charge depositions. I present work toward characterizing ²²⁰Rn as a calibration source for the EXO-200 detector, providing insight into the design of calibration sources for future large, low-background detectors like nEXO.

> Nicole Khusid University of Connecticut

Date submitted: 17 Sep 2019

Electronic form version 1.4