Advances in the Ab Initio Description of Neutron-Rich Nuclei

HEIKO HERGERT, Michigan State University

Today, computationally efficient many-body methods can be used to perform first-principles calculations for nuclei as heavy as the tin isotopes. This progress has made it possible to confront modern two- and three-nucleon interactions from Chiral Effective Field Theory (EFT) with a wealth of experimental data, in particular for neutron-rich nuclei, and provide important guidance in their ongoing refinement. Significant challenges remain when it comes to the treatment of collective correlations in doubly open-shell nuclei (e.g., due to intrinsic deformation) or the coupling to the continuum\(^2\). These issues have sparked new lines of research about combining complementary techniques, e.g., particle-hole expansions with symmetry breaking and restoration. The In-Medium Similarity Renormalization Group (IMSRG) offers a particular useful framework for such efforts\(^2,3,4\). I will give a brief overview of the state of the art of Ab initio nuclear many-body theory, and discuss applications of hybrid IMSRG approaches\(^2,5,6\) to the first-principles description of selected medium-mass open-shell nuclei, including candidates for fundamental symmetry tests\(^6\).

\(^1\)Work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics under awards no. DE-SC0017887, DE-SC0018083 (NUCLEI SciDac-4 Collaboration) and DE-SC0015376 (DBD Topical Collaboration).


