Abstract Submitted for the DNP20 Meeting of The American Physical Society

Study of 57 Zn β -delayed proton emission and its impact on the 56 Ni rp-process waiting point MANSI SAXENA, Institute of Nuclear and Particle Physics, Department of Physics and Astronomy, Ohio University — A strong bypass circumventing 56 Ni waiting point and diverting the rp-process flow through the path 55 Ni(p, γ) 56 Cu(p, γ) 57 Zn(β^+) 57 Cu(p, γ) 58 Zn has been proposed 1 . The 56 Ni(p, γ) and 56 Cu(p, γ) reaction rates calculated with the recently measured mass of 56 Cu show that the rp-process flow can redirect around the 56 Ni waiting point. However, the dominant source of uncertainty regarding the strength of this bypass is the β^+ -delayed proton emission decay branch of 57 Zn, having a present estimate of 78 ±17% 3 . We measured β -delayed proton emission of 57 Zn at the National Superconducting Cyclotron Laboratory using implantation in a DSSD surrounded by a clover array for p- γ -coincidences. We substantianlly improved the precision for the proton-emission branching ratio and identified new γ -ray transitions that each correspond to the exotic β - γ -p decay mode. These results, along with the impact on the rp-process flow will be discussed

³B. Blank et. al, Eur. Phys. J. A **31** 262-272 (2007).

Mansi Saxena Institute of Nuclear and Particle Physics, Department of Physics and Astronomy, Ohio University

Date submitted: 20 Jun 2020 Electronic form version 1.4

 $^{^1 \}rm W.\text{-J.}$ Ong, et. al, Phy. Rev C $\bf 95$ 055806 (2017). $^2 \rm A.A. Valverde,$ et. al, Phy. Rev Lett. $\bf 120$ 032701 (2018).