Abstract Submitted for the DNP20 Meeting of The American Physical Society

Event-by-event correlations between $\Lambda/\bar{\Lambda}$ polarization and CME observables in Au+Au collisions at $\sqrt{s_{NN}} = 27 \text{ GeV}$ from STAR¹ YICHENG FENG, Purdue Univ, STAR COLLABORATION — Spin-orbit interactions cause a global polarization of Λ/Λ with the vorticity (total angular momentum) in the participant collision zone. The strong magnetic field mainly created by the spectator protons were predicted to lead to difference in the Λ and Λ global polarization $(\Delta P = P_{\Lambda} - P_{\bar{\Lambda}} < 0)$. On the other hand, the QCD predicts topological charge fluctuation in vacuum, resulting in a chirality imbalance, or parity violation in a local domain. This would give rise to an imbalanced left- and right-handed Λ/Λ , $\Delta N = N_L - N_R \neq 0$, and a charge separation along the magnetic field, chiral magnetic effect (CME). The latter is characterized by the parity-even γ -correlator $\Delta \gamma$ and parity-odd sine coefficient a_1 . While measurements of individual ΔP , $\Delta \gamma$, and a_1 have not led to affirmative conclusions on the CME or the magnetic field, correlations among these observables may reveal new insights. We report exploratory measurements of event-by-event correlations between ΔP and $\Delta \gamma$, and between ΔN and a_1 , by the STAR experiment in Au+Au collision at 27 GeV.

¹for the STAR collaboration

Yicheng Feng Purdue Univ

Date submitted: 24 Jun 2020 Electronic form version 1.4