Abstract Submitted for the DNP20 Meeting of The American Physical Society

Probing few-body nuclear dynamics via ³H and ³He (e, ep)pn cross-section mesurements DIEN NGUYEN, MIT & JLab — We will report the first measurement of the (e,ep) three-body breakup reaction cross sections in helium-3 (³He) and tritium (³3H) at large momentum transfer ($Q^2 1.9 (\text{GeV/c})^2$) and $(x_B > 1)$ kinematics, where the cross-section should be sensitive to quasielastic (QE) scattering from single nucleons. The data cover missing momenta $40 < p_{miss} < 500$ MeV/c that, in the QE limit with no rescattering, equals the initial momentum of the probed nucleon. The measured cross-sections are compared with state-of-theart ab-initio calculations. Overall good agreement, within 20%, is observed between data and calculations for the full pmiss range for ³H and for $100 < p_{miss} < 350$ MeV/c for ³He. Including the effects of rescattering of the outgoing nucleon improves agreement with the data at $p_{miss} > 250 \text{ MeV/c}$ and suggests contributions from charge-exchange (SCX) rescattering. The isoscalar sum of ³He plus ³H, which is largely insensitive to SCX, is described by calculations to within the accuracy of the data over the entire p_{miss} range. This validates current models of the ground state of the three-nucleon system up to very high initial nucleon momenta of 500 MeV/c.

> Dien Nguyen MIT & JLab

Date submitted: 21 Sep 2020

Electronic form version 1.4