Probing for high momentum protons in 4He via the 4He(e,e'p)X reaction1 KONRAD ANIOL, California State University, FATIHA BENMOKHTAR, Duquesne University, JEFFERSON LAB HALL A COLLABORATION COLLABORATION — Experimental cross sections for the 4He(e; e'p)X reaction up to a missing momentum of 0.632 GeV/c at $x_B = 1.24$ and $Q^2 = 2$ (GeV/c)2 are reported. The data are compared to Relativistic Distorted Wave Impulse Approximation (RDWIA) calculations for the 4He(e; e'p)3H channel. Significantly more events in the narrow triton missing mass region that we used, 0.017 GeV \leq E_{miss} \leq 0.022 GeV, are measured for missing momenta $p_m \geq 0.45$ GeV/c than are predicted by the theoretical model. This narrow missing mass region was chosen to minimize (p_{nn}) and (p,d) background bleeding into the (p,t) state in the theoretical model. These excess events suggest that the effects of initial-state multi-nucleon correlations are stronger than expected by the RDWIA model. The ratio of the experimental cross sections to the theory cross sections shows a smooth dependence with missing momentum except in the region where the proton’s predicted momentum distribution has a deep minimum.

1NSF PHY 09-69380 and NSF PHY 16-15067

Fatiha Benmokhtar
Duquesne University

Date submitted: 24 Jun 2020
Electronic form version 1.4