Abstract Submitted for the DNP20 Meeting of The American Physical Society

Precision Measurement of the Neutron Asymmetry A_1^n at Large Bjorken x at 12 GeV JLab¹ MINGYU CHEN, University of Virginia — The virtual photon asymmetry A_1 is one of the fundamental quantities that provide information on the spin structure of the nucleon. The value of A_1 at high x_{Bi} is of particular interest because valence quark dominate in this region, which makes it a relatively clean region to study the nucleon spin structure. There are several theoretical calculations that apply to the high x valence quark region, and here we will focus on the neutron A_1^n . With the 12 GeV upgrade of JLab, a new experiment on A_1^n is being carried out using a 10.4 GeV beam, a polarized 3He target, and the HMS and the Super-HMS (spectrometers) in Hall C. This measurement will reach a deeper valence quark region: $x \sim 0.75$. And once combined with expected data from the upgraded CLAS12 experiment on the proton A_1^p , we will finally be able to reveal whether $\Delta d/d$ turns positive (as in pQCD) or remain negative at high x (as in RCQM). We will present the physics of A_1^n and present preliminary analysis results of the experiment. Performance of an upgraded polarized ${}^{3}He$ target will be presented.

 $^1\mathrm{Supported}$ by JLab Hall C experiment E12-06-110. The JLab Polarized 3He target group also make great contribution for this work.

Mingyu Chen University of Virginia

Date submitted: 25 Jun 2020 Electronic form version 1.4