Abstract Submitted for the DNP20 Meeting of The American Physical Society

Experimental study on the β - strength function in the decay of neutron-rich ¹³³In ZHENGYU XU, MIGUEL MADURGA, ROBERT GRZYWACZ, THOMAS KING, COREY HALVERSON, JOSEPH HEIDEMAN, MANINDER SINGH, RIN YOKOYAMA, University of Tennessee, Knoxville, THE ISOLDE DECAY STATION COLLABORATION — An experimental work has been recently conducted at the ISOLDE decay station (IDS), to study the neutronunbound states in 133 Sn following the beta decays of 133 In. The main decay strength of Z < 50 and N > 82 nuclei is anticipated to be the Gamow-Teller transition transforming a deeply bound $g_{7/2}$ neutron into a $g_{9/2}$ proton. In addition, first-forbidden transitions are postulated to take noticeable strength feeding lower-lying states. In order to examine these highly excited states above neutron separation energy, the neutron time-of-flight array, VANDLE, was installed at IDS to measure β -delayed neutron-emission energies. In this contribution, we will discuss our latest results regarding the excitation energies, branching ratios, and log-ft of a series of neutron unbound states observed in the ¹³³In decay. To gain insights into the microscopic configurations of those states and the strength distribution in 133 Sn, we carried out a large-scale shell-model calculation, of which the result and its comparison with experimental data will also be presented.

> Zhengyu Xu University of Tennessee, Knoxville

Date submitted: 25 Jun 2020

Electronic form version 1.4