Abstract Submitted for the DNP20 Meeting of The American Physical Society

Measurement of transverse single-spin asymmetries for dijet production in polarized p+p collisions at $\sqrt{s} = 200$ GeV at STAR¹ HUANZHAO LIU, Indiana Univ - Bloomington, STAR COLLABORATION — We report a new measurement of transverse single-spin asymmetries for pair-production of jets in collisions of transversely polarized protons at $\sqrt{s} = 200$ GeV with data taken in 2012 and 2015 at STAR. The correlation between the transverse momentum of a parton (\vec{k}_T) and the transverse spin (\vec{S}) of its proton, moving in the longitudinal (\vec{p}) direction, is probed at a high Q^2 scale (~160 GeV²). The corresponding Sivers $\langle k_T \rangle$ is calculated based on a simple kinematic model. By employing charge-tagging to separately enhance u- and d-quark contributions, we see non-zero Sivers effects for the first time in dijet production with transversely polarized proton collisions. The individual parton contributions (u, d, gluon+sea) to the measured $\langle k_T \rangle$ are extracted through bin-by-bin matrix inversion of the charge-sorted $\langle k_T \rangle$ results.

¹National Science Foundation

Huanzhao Liu Indiana Univ - Bloomington

Date submitted: 25 Jun 2020

Electronic form version 1.4