Abstract Submitted for the DNP20 Meeting of The American Physical Society

"Bulk" Hyperpolarized ¹³¹Xe with $P_{Xe} \sim 7\%$: a Potential Target for Neutron Optics Searches for Time-Reversal Invariance Violation¹ BOYD GOODSON, Southern Illinois University Carbondale, NOPTREX COLLAB-ORATION — The very large parity-odd asymmetry seen in the 3.2 eV p-wave resonance in ¹³¹Xe [1,2] makes it an interesting nucleus for NOPTREX. However this isotope is notoriously difficult to hyperpolarize owing to its strong nuclear quadrupole moment. We investigate the bulk preparation of hyperpolarized 131 Xe via spin exchange optical pumping (SEOP). Isotopic enrichment and next-generation spectrally-narrowed laser diode arrays allow for real-time observation of polarization dynamics via in situ low-field NMR, and optimization as a function of temperature, alkali metal choice (Rb and Cs), resonance offset, and other parameters. ¹³¹Xe polarization values as high as $7.6\% \pm 1.5\%$ were achieved at 0.37 amagat in a 0.1 L cell $(8.5 \times 10^{20} \text{ }^{131}\text{Xe spins})$, demonstrating feasibility for use in spin-polarized neutronscattering targets. Ongoing efforts to scale up ¹³¹Xe SEOP to aluminosilicate cells with larger volumes for use in measurements of pseudomagnetic precession of polarized neutrons will also be described. [1] J. J. Szymanski, W. M. Snow et al., Phys. Rev. C 53, R2576 (1996). [2] V. Skoy et al., Phys. Rev. C 53, R2573 (1996).

¹Research Corporation Cottrell SEED Award; NSF (CHE-1905341, REU DMR-1757954), DoD (W81XWH-15-1-0272)

Boyd Goodson Southern Illinois University Carbondale

Date submitted: 25 Jun 2020

Electronic form version 1.4