Time Dependence of Angular Alignment in Heavy Ion Collisions

BRYAN HARVEY, MIKE YOUNGS, ALAN B MCINTOSHER, ANDREA JEDELE, AUSTIN ABBOTT, JEROME GAUTHIER, KRIS HAGEL, ANDREW HANNAMEN, YIU-WING LUI, LAUREN A MCINTOSHER, ALIS RODRIGUEZ MANSO, MAXWELL SORENSEN, ZACHARY TOBIN, ROY WADA, ANDREW ZARELLA, SHERRY J YENNELLO, Texas AM University Cyclotron Institute, KELLY KRIEBLE, Moravian College Physics and Earth Science Department —

This study provides theoretical input regarding the time dependency of the angular alignment, α, an angle used to assess the amount of rotation of a projectile-like fragment (PLF*) after separating from a target nucleus. A set of Constrained Molecular Dynamics (CoMD) simulations of 70Zn+70Zn nuclear collisions with collision energies of 35 and 45 MeV/nucleon was used to study this correlation. An algorithm is proposed which searches through CoMD events and identifies the excited PLF* after it separates from the target and determines its lifetime, Δt. It also determines the alignment angle α, of the PLF*. The dynamic yield is extracted, and its evolution with PLF* lifetime is studied. The correlation of the average alignment angle in the dynamic contribution, $\langle \alpha \rangle_{dyn}$, is approximately linearly correlated with PLF* lifetime with $d \langle \alpha \rangle_{dyn}/d \Delta t = 2.0 \pm 0.2 \text{ rad/zs}$ for both collision energies studied, consistent with values utilized in prior experiment.

1This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award DE-FG02-93ER40773 and the National Science Foundation under Award PHY-1659847.

Bryan Harvey
Texas A
M University Cyclotron Institute

Date submitted: 25 Jun 2020