Abstract Submitted for the DNP20 Meeting of The American Physical Society

Transverse Single-Spin Asymmetry for Electromagnetic Jets at Forward Rapidities at STAR in p^{\uparrow} + p Collisions at \sqrt{s} = 200 GeV LAT-IFUL KABIR, University of California, Riverside, STAR COLLABORATION — There have been various attempts, both experimentally and theoretically, to understand the origin of the unexpectedly large transverse single-spin asymmetries (A_N) for inclusive hadron production at forward rapidity in p^{\uparrow} + p collisions that persist at high center-of-mass energies. Two proposed potential sources are the twist-3 contributions in the collinear factorization and the transverse-momentum-dependent contributions from either the initial-state quark and gluon Sivers functions or the final-state Collins fragmentation function. In 2015 and 2017, RHIC collected data from transversely polarized pp collisions, which are ideal to further characterize A_N and explore its potential sources. The STAR Forward Meson Spectrometer (FMS) and Endcap Electromagnetic Calorimeter (EEMC), having pseudo-rapidity (η) coverages of 2.6 - 4.2 and 1.1 - 2.0 respectively, can be used to detect photons, neutral pions, and eta mesons. We present an analysis update for A_N of electromagnetic jets in FMS and EEMC using p^{\uparrow} + p collisions at $\sqrt{s} = 200$ GeV. In this analysis, we explore the dependences of A_N on photon multiplicity inside the jet, jet transverse momentum, and jet energy.

> Md Latiful Kabir University of California, Riverside

Date submitted: 25 Jun 2020 Electronic form version 1.4