Abstract Submitted for the DNP20 Meeting of The American Physical Society

New Results in the search for $0\nu\beta\beta$ decay in ¹⁰⁰Mo from CUPID-Mo BRADFORD WELLIVER, Lawrence Berkeley National Laboratory, CUPID-MO COLLABORATION — CUPID-Mo is a demonstrator experiment for CUPID (CUORE Upgrade with Particle ID), the planned next-generation upgrade of the first ton scale cryogenic bolometric $0\nu\beta\beta$ decay experiment, CUORE (Cryogenic Underground Observatory for Rare Events). CUPID-Mo was operated at Laboratoire Souterrain de Modane in France as an array of 20 enriched Li₂¹⁰⁰MoO₄ (LMO) cylindrical crystals ($\sim 200g$ each), with each LMO featuring a Ge light detector (LD). The LMOs and LDs were operated at ~ 20 mK and instrumented with NTD sensors allowing for the collection of both heat and scintillation light. This dual mode of energy collection allows for α events to be distinguished from β/γ events, significantly reducing the background from degraded α s in the heat channel. With a demonstrated bolometric energy resolution of $\sim 7 \text{ keV}$ (FWHM) at 2615 keV, complete discrimination of α 's from β/γ 's and very low radioactive contamination, CUPID-Mo is in the background-free regime. Here we present the current leading results of CUPID-Mo with an exposure of over 2 kg-years for the $0\nu\beta\beta$ decay of ¹⁰⁰Mo. In this talk we present the analysis for this result, the current limit and the status of ongoing CUPID-Mo analyses.

> Bradford Welliver Lawrence Berkeley National Laboratory

Date submitted: 26 Jun 2020

Electronic form version 1.4