Abstract Submitted for the DNP20 Meeting of The American Physical Society

Simulating response of C^7LYC detector for fast neutron detection¹ SUDIPTA SAHA, PARTHA CHOWDHURY, ANDREW M. ROGERS, PETER C. BENDER, University of Massachusetts Lowell — A detailed Monte Carlo simulation code has been developed to study the response of ⁷Li-enriched $Cs_2LiYCl_6(C^7LYC)$ detectors using the Geant4 simulation framework. The intrinsic efficiency of a 1 thick shell of C⁷LYC material is calculated for fast neutrons in the range 0.5 - 8 MeV and are compared with prior MCNP simulations and data. Contributions from ${}^{35}Cl(n,p)$ and ${}^{35}Cl(n,\alpha)$ reactions are differentiated and studied in the simulated spectrum. The detector efficiency as a function of energy is deduced using different cross-section evaluations and recent experimental measurements. Light output for both 3" x 3" and 1" x 1" C⁷LYC detectors were simulated according to the Birks equation, with parameters deduced from experimental spectra. From this quenching factors for the light output of alphas and protons in C⁷LYC are calculated from calibrated gamma-ray spectra. The simulations will be discussed in the context of benchmarking C^7LYC as an emerging scintillator for fast neutron measurements.

 $^1 \rm Supported$ by the U.S. Department of Energy grants DE-NA0002932 and DE-FG02-94ER40848

Sudipta Saha University of Massachusetts Lowell

Date submitted: 26 Jun 2020

Electronic form version 1.4