Abstract Submitted for the DNP20 Meeting of The American Physical Society

System size scan of heavy flavor R_{AA} and v_n using PbPb, XeXe, ArAr, and OO collisions ROLAND KATZ, Subatech Nantes, JACQUELYN NORONHA-HOSTLER, University of Illinois Urbana-Champaign, CAIO PRADO, Central China Normal University, ALEXANDRE SUAIDE, University of So Paulo — Experimental measurements indicate no suppression (e.g. $R_{pPb} \sim 1$) but a surprisingly large D meson v_2 was measured in pPb collisions. In order to understand these results we use Trento+v-USPhydro+DAB-MOD to make predictions and propose a system size scan at the LHC involving ²⁰⁸PbPb, ¹²⁹XeXe, ⁴⁰ArAr, and ¹⁶OO collisions. Whatever the chosen transport model, we find that the nuclear modification factor approaches unity as the system size is decreased, but nonetheless, in the 0-10% most central collisions $v_2\{2\}$ is roughly equivalent regardless of system size. These results arise from a rather non-trivial interplay between the shrinking path length and the enhancement of eccentricities in smaller systems. Finally, we also find a surprising sensitivity of D mesons $v_2\{2\}$ in 0-10% centrality class at $p_T = 2 - 10$ GeV to the slight deformation of ¹²⁹Xe recently found at LHC.

> Roland Katz Subatech Nantes

Date submitted: 26 Jun 2020

Electronic form version 1.4