Abstract Submitted for the DNP20 Meeting of The American Physical Society

²⁵Si β -decay spectroscopy using the Gaseous Detector with Germanium Tagging (GADGET) system¹ LIJIE SUN, National Superconducting Cyclotron Laboratory, MSU, MOSHE FRIEDMAN, The Hebrew University of Jerusalem, TAMAS BUDNER, National Superconducting Cyclotron Laboratory, MSU, DAVID PREZ-LOUREIRO, Canadian Nuclear Laboratories, EMANUEL POLLACCO, Universit Paris-Saclay, CHRISTOPHER WREDE, ALEX BROWN, MARCO CORTESI, CATHLEEN FRY, BRENT GLASSMAN, JOE HEIDE-MAN, MOLLY JANASIK, AARON MAGILLIGAN, MICHAEL ROOSA, JORDAN STOMPS, JASON SURBROOK, PRANJAL TIWARI, National Superconducting Cyclotron Laboratory, MSU — The protons and γ rays emitted in ²⁵Si β decay were measured using the GADGET system. Three ²⁴Mg γ -ray lines, eight ²⁵Al γ -ray lines, and a 719-keV proton branch were observed for the first time in ²⁵Si decay. A Monte Carlo method was used to model the Doppler broadening of $^{24}Mg \gamma$ -ray lines caused by proton emissions. All the proton-bound states of ²⁵Al are observed to be populated in the β decay of ²⁵Si. We have reported the first measurement of the ²⁵Si β -delayed γ -ray intensities through the ²⁵Al unbound states. An enhanced decay scheme of ²⁵Si has been constructed and compared to the mirror decay of ²⁵Na and the shell-model calculations using two newly-developed sd-shell Hamiltonians. USDC and USDI. This work offers insights into the fine nuclear structure of 25 Al.

¹This work was supported by the U.S. NSF under Grants No. PHY-1102511, PHY-1565546, PHY-1913554, and PHY-1811855, and the U.S. DOE, Office of Science, under award No. DE-SC0016052.

Lijie Sun National Superconducting Cyclotron Laboratory, MSU

Date submitted: 26 Jun 2020

Electronic form version 1.4