Abstract Submitted for the DNP20 Meeting of The American Physical Society

Evolution of the Z=20 gap in neutron-rich Ca isotopes CLEMEN-TINE SANTAMARIA, Lawrence Berkeley National Laboratory — In recent years, neutron-rich Ca isotopes have been studied extensively, both theoretically and experimentally, as this is a region where structure can have a dramatic influence on the location of the neutron dripline. Large-space ab-initio calculations based on NN+3N forces predict that the dripline could extend as far as ⁷⁰Ca. However, recent data reveal deficiencies in theoretical predictions which reveal that extrapolating to the dripline may prove unreliable For example, an anomalously large charge radii was measured in ^{50,52}Ca relative to ⁴⁸Ca which challenges the doubly-magic nature of ⁵²Ca. I will report on the results of an experiment performed at the NSCL with GRETINA to determine the proton single-particle occupancies using the (d,n) proton transfer reaction on ⁵⁰Ca to states in ⁵¹Sc.

> Clementine Santamaria Lawrence Berkeley National Laboratory

Date submitted: 26 Jun 2020

Electronic form version 1.4