Ab initio calculations of $^{10}\text{C} \rightarrow ^{10}\text{B}$ super-allowed Fermi transition1 MICHAEL GENNARI, PETR NAVRATIL, TRIUMF — Cabibbo-Kobayashi-Maskawa (CKM) matrix unitarity is one of the most sensitive probes for beyond standard model (BSM) physics. Extraction of the largest contributor to unitarity, the V_{ud} matrix element, from super-allowed $0^+ \rightarrow 0^+$ Fermi beta decay transitions requires theoretical calculation of the isospin symmetry breaking correction δC. We apply the No-Core Shell Model with Continuum (NCSMC) 1, a method for describing both bound and unbound states in light nuclei in a unified way, to investigate the $^{10}\text{C} \rightarrow ^{10}\text{B}$ super-allowed Fermi transition. With chiral two- and three-nucleon interactions as the only input, we are able to calculate the isospin breaking correction δC in a more robust way than in other approaches. We also discuss several intermediate and related results, in particular, the nuclear structure of ^{10}C, ^{10}B, and ^{10}Be, as well as our plans to calculate δC for $^{14}\text{O} \rightarrow ^{14}\text{N}$ Fermi transition. 1 P. Navratil, S. Quaglioni, G. Hupin, C. Romero-Redondo, A. Calci, Physica Scripta 91, 053002 (2016).

1Supported by the NSERC Grant No. SAPIN-2016-00033. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. Computing support came from an INCITE Award on the Summit supercomputer of the Oak Ridge Leadership Computing Facility (OLCF) at ORNL, and from Compute Canada.