Abstract Submitted for the DNP20 Meeting of The American Physical Society

The β -decay of ³¹Ne¹ PETER BENDER, University of Massachusetts, Lowell — The neutron-rich Na isotopes approaching N=20 reside along the southern boundary of the Island of Inversion. These isotopes are of particular interest to nuclear structure, where observed details in the structure could lead to a deeper understand lying force which causes deformation in this mass region. Recently, the -decay of ³¹Ne has been studied, promising to add need structure detail to a region of the chart which had only been accessed using fast in-beam methods. Using the CCF at the NSCL, a ⁴⁸Ca beam was fragmented, the fast ³¹Ne isotopes were subsequently selected using the A1900 and implanted in the BCS, allowing eventby-event particle identification to be made. Excited states in the daughter ^{31,30}Na isotopes are identified by emitted γ -rays collected with 16 Clover-style HPGe and 15 LaBr₃ detectors surrounding the implant detector in a rhombicuboctahedron geometry and correlated to decay events. The ongoing analysis will be discussed, and preliminary results will be presented.

¹This work was supported in part by the U.S. department of Energy grant and DE-FG02-94ER40848 and the National Science Foundation.

Peter Bender University of Massachusetts, Lowell

Date submitted: 26 Jun 2020

Electronic form version 1.4