Abstract Submitted for the DNP20 Meeting of The American Physical Society

Finite volume relations for two hadron matrix elements and form factors ANDREW JACKURA, RAUL BRICENO, Old Dominion University and Jefferson Lab, MAXWELL HANSEN, CERN — Recently, a framework has been developed to study form factors of two hadron states probed by an external current. The method is based on relating two hadron finite-volume matrix elements, computed using lattice QCD, to the corresponding infinite-volume generalized formfactors. We review the formalism, as well as the analytic properties of the generalized form-factors. As a consistency check, we study the formalism in two limits: The limit where the interaction between the two hadrons is perturbative, and the limit where the system forms a bound state. These checks allow us to verify that the formalism yields the expected finite volume scaling relations.

> Andrew Jackura Old Dominion University and Jefferson Lab

Date submitted: 26 Jun 2020

Electronic form version 1.4