Neutron-Capture Cross Section Constraints for i-process Nucleosynthesis

ANDREA L. RICHARD, SEAN N. LIDDICK, ARTEMIS SPYROU, National Superconducting Cyclotron Laboratory, MSU, ALEXANDER C. DOMBOS, University of Notre Dame, E12001 COLLABORATION — Neutron-capture nucleosynthesis occurs via a variety of processes depending on the astrophysical sites and conditions. Recent observations and stellar evolution models suggest that an intermediate process, known as the i-process, exists between the s- and r-processes, and is necessary to explain abundances in the Ge-Te region. The abundance patterns of i-process nuclei are greatly impacted by neutron-capture rates. Direct neutron-capture measurements are only feasible for long-lived nuclei, while for short-lived nuclei, indirect techniques are required. One such technique is the β-Oslo method in which the nuclear level density (NLD) and γ-strength function (γSF) are extracted following the β-decay of a neutron-rich parent and are used in a statistical reaction model to constrain the neutron-capture cross section. In this work, 103,104Mo were studied at the NSCL via the β-decay of 103,104Nb and detected using the Summing NaI (SuN) detector. Results on the NLD, γSF, neutron-capture cross sections, and reaction rates of 102Mo(n,γ)103Mo and 103Mo(n,γ)104Mo using the β-Oslo method, and i-process network calculations from the Nucleosynthesis Grid (NuGrid) Collaboration will be presented.

1This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003180.

Andrea Richard
National Superconducting Cyclotron Laboratory, MSU

Date submitted: 29 Jun 2020