Abstract Submitted for the DNP20 Meeting of The American Physical Society

First study of single-neutron excitations of 207 Hg via the 206 Hg(d,p) reaction¹ TSZ LEUNG TANG, Argonne National Laboratory — We report the first exploration of the single-neutron shell structure of 207 Hg, which located below Z = 82 and with N >126 in an almost unexplored region of the nuclear chart. The 206 Hg(d,p) neutron-adding reaction in inverse kinematics at 7.4 MeV/u was performed at CERN's HIE-ISOLDE facility. The single-neutron excitations in 207 Hg were determined from the scattered protons, which were detected using the new ISOLDE Solenoidal Spectrometer at a magnetic field strength of 2.5 T. The Q-value resolution was 140 keV FWHM. Angular distributions suggest that the 0g_{9/2}, 2d_{5/2}, 3s_{1/2}, 2d_{3/2} and 0g_{7/2} states were observed. An extrapolation of the single-particle energies using 209 Pb and 207 Hg as anchors towards the neutron threshold plays an important role in improving our understanding the r-process nucleosynthesis in this region.

¹This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357 (ANL), the UK Science and Technology Facilities Council, the European Union's Horizon 2020 Framework research and innovation program under grant agreement no. 654002 (ENSAR2), the Research Foundation Flanders (FWO, Belgium), and the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 617156.

Tsz Leung Tang Argonne National Laboratory

Date submitted: 30 Jun 2020

Electronic form version 1.4