Abstract Submitted for the DNP20 Meeting of The American Physical Society

Study of States Near $E_x=6$ MeV in 18 Ne Using 17 F(p,p) 1 B SUDARSAN, Louisiana State University, Baton Rouge. , L E LINHARDT, J C BLACKMON, C M DEIBEL, H E GARDINER, K T MACON, Louisiana State University, Baton Rouge, L T BABY, I WIEDENHWER, Florida State University, Tallahassee — The 14 O(α ,p) 17 F reaction rate has a strong influence on the light curve of Type I X-ray bursts. At temperatures lower than 1 GK, this rate is dominated by states in 18 Ne with $E_x\sim 6$ MeV. The RESOLUT radioactive-ion beam facility at FSU was used to study 18 Ne resonances around $E_x\sim 6$ MeV using 17 F+p scattering in inverse kinematics. We report a combined R-matrix analysis of data from our experiment with data from an earlier study 2 of the same reaction that covered a broader energy range but with poorer resolution. We will report constraints that can be placed on the spin-parity of resonances and proton partial widths that are important for the 14 O(α ,p) 17 F reaction rate. Results will be compared to information from other reaction studies in the literature.

¹This work is supported by the US DOE Office of Nuclear Physics Award DE-FG02-96ER40978, and partly by NSF Grant No. Phy-1712953 ²J. Hu et al., Phys.Rev.C **85** 025803(2014)

Sudarsan Balakrishnan Louisiana State University

Date submitted: 30 Jun 2020 Electronic form version 1.4